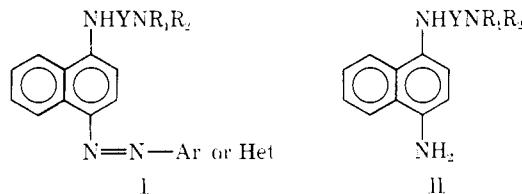


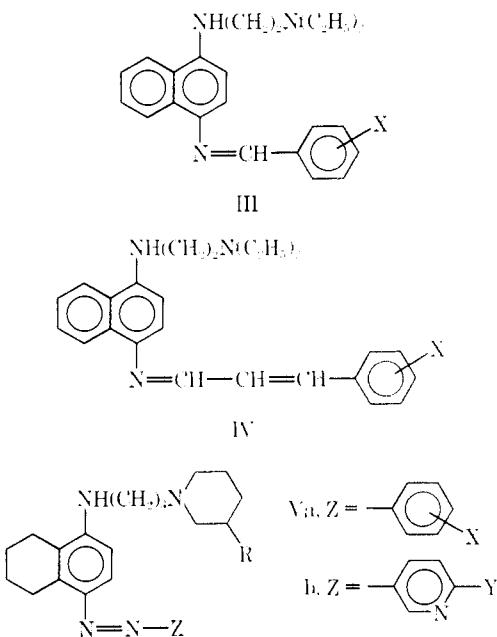
their appreciation to Dr. Paul E. Thompson, Mr. R. E. Voigtman, and Dr. M. W. Fisher of these laboratories for the antischistosome and antibacterial testing. We

also thank Mr. C. E. Childs and associates for the microanalyses, and Dr. J. M. Vandenberg and co-workers for the physical chemistry data.

Synthetic Schistosomicides. XVIII. N-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)amides, N-{5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl}amides, and Related Amide and Urea Derivatives¹


LESLIE M. WERBEL, JOSEPHINE BATTAGLIA, EDWARD F. ELSLAGER, AND CARL YOUNGSTROM

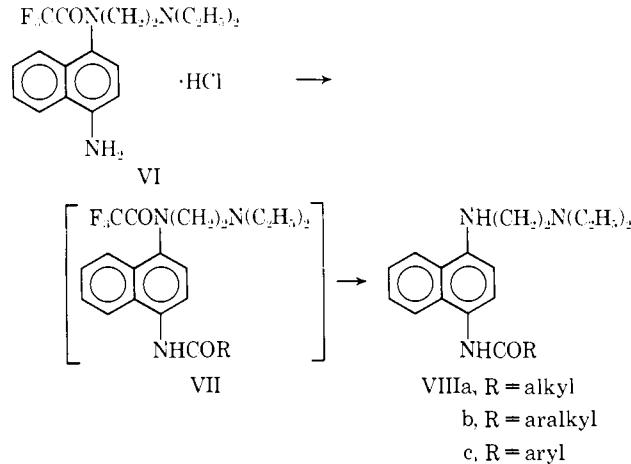
*Chemistry Department, Division of Medical and Scientific Affairs,
Parke, Davis and Company, Ann Arbor, Michigan 48106*


Received February 18, 1970

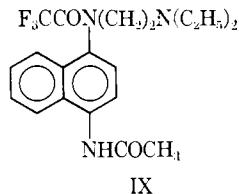
An array of *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)alkyl- and aralkylamides [VIIIa and b (1-35), XIa and b], *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)arylamides [VIIIC (36-47), Xa and b, XVI], and *N*-{5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl}amides (XXIVa-e) was prepared by treating *N*-(4-amino-1-naphthyl)-*N*-(2-diethylaminoethyl)-2,2,2-trifluoroacetamide (VI) or *N*-(4-amino-5,6,7,8-tetrahydro-1-naphthyl)-2,2,2-trifluoro-*N*-(3-piperidinopropyl)acetamide (XXIII) with the appropriate acid chloride or anhydride in pyridine, benzene, or acetic acid. Several *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)ureas, thioureas, and sulfonamides (XII, XVI-XVIII) were also prepared. Schistosomicidal activity is widespread among the amides of structure VIIIa-c, Xa and b, and XXIVe, and 15 compounds cured *Schistosoma mansoni* infections in mice at diet or gavage doses ranging from 45 to 326 mg/kg per day for 3 to 14 days. Four amides also displayed significant activity against *S. mansoni* in rhesus monkeys. Structure-activity relationships are discussed.

Schistosomicidal activity is rife among the *N,N*-dialkyl-*N'*-(4-arylazo- and 4-heterocyclic azo-1-naphthyl)alkylenediamines (I),²⁻⁷ *N*-[(dialkylamino)alkyl]-1,4-naphthalenediamines (II),⁸ and *N*-(benzylidene)

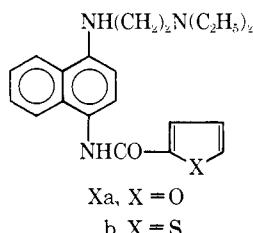
and cinnamylidene)-*N'*-[2-(diethylamino)ethyl]-1,4-naphthalenediamines (III and IV).¹ Moreover, certain 1-(3-{[5,6,7,8-tetrahydro-4-(phenylazo) and 3-pyridylazo]-1-naphthyl}amino)propylpiperidines (Va and b) are highly active against *Mycobacterium tuberculosis* H₃₇Rv and *M. lepraeumurium* *in vitro* and in mice.^{9,10} Unfortunately, these substances usually produce gastrointestinal side effects in experimental animals at doses only severalfold higher than therapeutically effective doses.

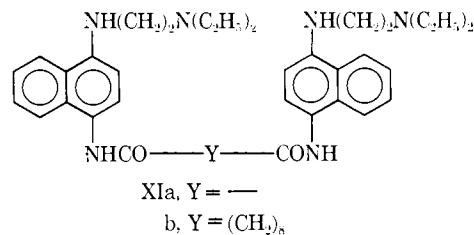

In a further expatiation of previous work, various *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)alkyl- and aralkylamides, *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)benzamides, *N*-{5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl}amides, and related substances have been synthesized for anti-schistosomal and antimycobacterial evaluation. It was hypothesized that such compounds, like the sulfonylanilide antimalarials,¹¹ might undergo slow enzymatic scission upon contact with body tissues and fluids, and thus display more favorable tolerance, ab-

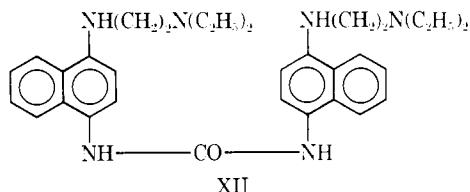
- (1) For paper XVII, see E. F. Elslager, J. Bartaglia, A. A. Phillips, and L. M. Werbel, *J. Med. Chem.*, **13**, 587 (1970).
- (2) E. F. Elslager, D. B. Capps, L. M. Werbel, D. F. Worth, J. E. Meisenhelder, H. Najarian, and P. E. Thompson, *ibid.*, **6**, 217 (1963).
- (3) E. F. Elslager, D. B. Capps, D. H. Kurtz, L. M. Werbel, and D. F. Worth, *ibid.*, **6**, 646 (1963).
- (4) E. F. Elslager, D. B. Capps, D. H. Kurtz, F. W. Short, L. M. Werbel, and D. F. Worth, *ibid.*, **9**, 378 (1966).
- (5) S. T. Ch'en, I. F. Ch'en, P. C. Kun, Y. C. Hu, J. H. Yao, and T. H. Chou, *Yao Hsueh Hsueh Pa*, **13**, 30 (1966).
- (6) E. F. Elslager, D. B. Capps, D. H. Kurtz, and D. F. Worth, *J. Med. Chem.*, **11**, 1201 (1968).
- (7) E. F. Elslager and A. A. Phillips, *ibid.*, **12**, 519 (1969).
- (8) E. F. Elslager, D. B. Capps, L. M. Werbel, D. F. Worth, J. E. Meisenhelder, and P. E. Thompson, *ibid.*, **7**, 487 (1964).
- (9) L. M. Werbel, E. F. Elslager, M. W. Fisher, Z. B. Gavrilis, and A. A. Phillips, *ibid.*, **11**, 411 (1968).
- (10) Y. T. Chang, *Antimicrob. Ag. Chemother.*, **4**, 465 (1966).


sorption, and excretion patterns than the corresponding diamines.^{8,9}

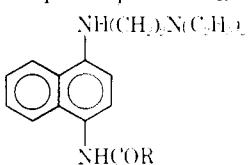
Previous work in these laboratories^{1-4,6-8} showed that the diethylaminoethyl side chain among types I-IV usually conferred optimum schistosomicidal potency; therefore, initial efforts were directed toward the preparation of various *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)alkyl- and aralkylamides (1-35, Table I) (VIIIa and b) and *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)benzamides (36-47, Table II) (VIIIc). Early attempts to acylate *N*-(2-(diethylamino)ethyl)-1,4-naphthalenediamine (XIV)⁸ revealed that attack on both of the aromatic amine functions proceeded indiscriminately. Therefore, the direct acylation route was, for the most part, abandoned in favor of the scheme outlined in Scheme I. Acylation of


SCHEME I


N-(4-amino-1-naphthyl)-*N*-(2-(diethylamino)ethyl)-2,2,2-trifluoroacetamide monohydrochloride (VI)^{4,6} with the appropriate acid chloride (procedure A) or anhydride (procedure B) in pyridine or benzene gave the intermediate *N*-(2-(diethylamino)ethyl)-2,2,2-trifluoro-*N,N'*-1,4-naphthylenebisamides (VII) which, with the exception of *N*-(2-(diethylamino)ethyl)-2,2,2-trifluoro-*N,N'*-1,4-naphthylenebisacetamide (IX), were


not purified but were hydrolyzed directly to give the desired *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)amides (1-3, 6-47, Tables I and II) in 11-74% overall yield. The facile, selective removal of the F₃CCO protecting group was accomplished utilizing NaOH in aq EtOH. *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)-2-furamide (Xa) (37%) and *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)-2-thiourea (Xb) (38%)

(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)-2-thiophenecarboxamide (Xb) (53%) were obtained in a similar manner from VI, 2-furoyl chloride, and 2-thienoyl chloride, while the condensation of 2 equiv of VI with 1 equiv of oxalyl chloride and sebacyl chloride afforded *N,N'*-bis(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)oxamide (XIa) (21%) and *N,N'*-bis(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)decanedi-


amide (XIb) (34%) (procedure A). Surprisingly, attempts to prepare a diethylcarbamoyl derivative from VI and diethylcarbamoyl chloride led instead to the formation of 1,3-bis(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)urea (XII) (35%).

Other *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)amide and urea derivatives (4, 5, XIII, XV-XVIII) were prepared directly from *N*-(2-(diethylamino)ethyl)-1,4-naphthalenediamine (XIV)⁸ (Scheme II). Treatment of XIV with benzoyl chloride in the presence of CaH₂ gave *N*-(4-amino-1-naphthyl)-*N*-(2-(diethylamino)ethyl)benzamide (XIII), a position isomer of 41, in low yield (12%). *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)phthalimide (XV) was obtained in 26% yield by the condensation of XIV with phthalic anhydride in HOAc, while the reaction of XIV with maleic and succinic anhydride afforded *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)maleamic acid (4) (76%) and *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)succinamic acid (5) (36%), respectively (procedure D). *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)benzenesulfonamide monohydrochloride (XVI) (8%), 1-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)-3-phenylurea dihydrochloride (XVII) (54%), and 1-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)-3-heptyl-2-thiourea dihydrochloride (XVIII) (38%) were produced when XIV was allowed to react with benzenesulfonyl chloride, phenyl isocyanate, and heptyl isothiocyanate.

Although potent antischistosome activity is not widespread among the antimycobacterial 1-(3-{[5,6,7,8-tetrahydro-4-(phenylazo) and 3-pyridylazo]-1-naphthyl]amino}propyl)piperidines Va and b, recent studies in these laboratories showed that several compounds in the series exhibited strong activity against *S. mansoni* in mice. Among them, 5-{[5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthylazo]resorcinol (XIX),⁹

TABLE I
N-(4-){[2-(DIETHYLAMINO)ETHYL]AMINO}-1-NAPHTHYLALKYL- AND ARALKYLAMIDES

No.	R	Mp, °C	Yield purified, %	Procedure	Purification solvent	Formula ^a
1	CH ₃	96-98	64	C	EtOAc	C ₁₈ H ₂₅ N ₃ O
2	CH ₂ CH ₃	96.5-99	55	B	C ₆ H ₆ -petroleum ether	C ₁₉ H ₂₇ N ₃ O
3	CH ₂ OCH ₃	84.5-85.5	32	A	Heptane	C ₁₉ H ₂₇ N ₃ O ₂
4	CH=CHCO ₂ H	179-180 dec	76	D	C ₆ H ₆	C ₂₀ H ₂₅ N ₃ O ₃ ·0.5H ₂ O ^b
5	(CH ₂) ₂ CO ₂ H	181-183 dec	36	D	MeOH-Et ₂ O	C ₂₀ H ₂₇ N ₃ O ₂
6	(CH ₂) ₂ CH ₃	104-105	64	A	EtOH-H ₂ O	C ₂₀ H ₂₅ N ₃ O
7	CH(CH ₃) ₂	110-112.5	74	B	Heptane	C ₂₀ H ₂₅ N ₃ O ^c
8	(CH ₂) ₃ CH ₃	100-103	69	B	Heptane	C ₂₁ H ₃₁ N ₃ O
9	CH(CH ₃)CH ₂ CH ₃	106-108	41	A	i-Pr ₂ O	C ₂₁ H ₃₁ N ₃ O
10	C(CH ₃) ₃	113.5-115.5	34	A	Heptane	C ₂₁ H ₃₁ N ₃ O
11	(CH ₂) ₄ CH ₃	101-103.5	71	B	Heptane	C ₂₂ H ₃₃ N ₃ O
12	(CH ₂) ₂ CH(CH ₃) ₂	100-101	14	A	Heptane	C ₂₂ H ₃₃ N ₃ O
13	-	119-120.5	56	B	MeCN	C ₂₃ H ₃₂ N ₃ O
14	i(CH ₂) ₂ CH ₃	95-98	43	B	Heptane	C ₂₃ H ₃₅ N ₃ O
15	C(CH ₃) ₂ CH ₂ CH ₂ CH ₃	88-89	30	A	i-Pr ₂ O	C ₂₃ H ₃₅ N ₃ O
16	CH ₂ O ₂ C ₆ H ₅	111-113	11	A	EtOH-H ₂ O	C ₂₄ H ₂₉ N ₃ O ₂
17	(CH ₂) ₈ CH ₃	98-100	33	A	EtOH-H ₂ O	C ₂₄ H ₃₇ N ₃ O
18	CH(C ₂ H ₅)(CH ₂) ₃ CH ₃	109.5-113	53	A	Heptane	C ₂₄ H ₃₇ N ₃ O
19	CH=CHC ₆ H ₅	149.5-151.5	22	A	EtOAc	C ₂₅ H ₂₅ N ₃ O
20	(CH ₂) ₃ C ₆ H ₅	87-90	31	A	i-Pr ₂ O	C ₂₅ H ₃₁ N ₃ O
21	i(CH ₂) ₂ CH ₃	59-62	39	A	Heptane	C ₂₅ H ₃₃ N ₃ O
22	CH ₂ CH(CH ₃)CH ₂ C(CH ₃) ₃	115-116	39	A	i-Pr ₂ O	C ₂₅ H ₃₃ N ₃ O ^d
23	CH(C ₆ H ₅)CH ₂ CH ₃	113-114	21	A	i-Pr ₂ O	C ₂₆ H ₃₃ N ₃ O
24	i(CH ₂) ₂ CH ₃	57-61	58	B	Heptane	C ₂₆ H ₄₁ N ₃ O
25	(CH ₂) ₂ CH=CH ₂	48-51	44	A	i-Pr ₂ O	C ₂₇ H ₄₁ N ₃ O
26	(CH ₂) ₂ CH ₃	52-54	38	A	Heptane	C ₂₇ H ₄₃ N ₃ O
27	(CH ₂) ₁₀ CH ₃	52-54	38	B	Heptane	C ₂₈ H ₄₅ N ₃ O
28	(CH ₂) ₁₁ CH ₃	68-69	11	A	EtOH-H ₂ O	C ₂₉ H ₄₇ N ₃ O
29	CH(C ₆ H ₅) ₂	120-122	13	A	Heptane	C ₃₀ H ₃₃ N ₄ O
30	(CH ₂) ₁₂ CH ₃	55-57.5	64	A	Heptane	C ₃₀ H ₄₅ N ₃ O
31	i(CH ₂) ₃ CH ₃	74-77	35	A	Heptane	C ₃₁ H ₅₂ N ₃ O
32	(CH ₂) ₄ CH ₃	70-72	49	B	Heptane	C ₃₂ H ₄₆ N ₃ O ^e
33	(CH ₂) ₅ CH ₃	80-81	46	A	Heptane	C ₃₃ H ₄₈ N ₃ O
34	(CH ₂) ₁₆ CH ₃	77.5-79.5	17	B	Heptane	C ₄₄ H ₅₃ N ₃ O
35	(CH ₂) ₁₇ CH ₃	84-85	47	A	Heptane	C ₄₅ H ₅₅ N ₄ O

^a All compounds were analyzed for C, H, N. ^b H₂O: calcd, 2.47; found, 2.73. ^c C: calcd, 73.36; found, 72.91. ^d C: calcd, 75.52; found, 75.02. ^e C: calcd, 77.52; found, 77.09.

SCHEME II

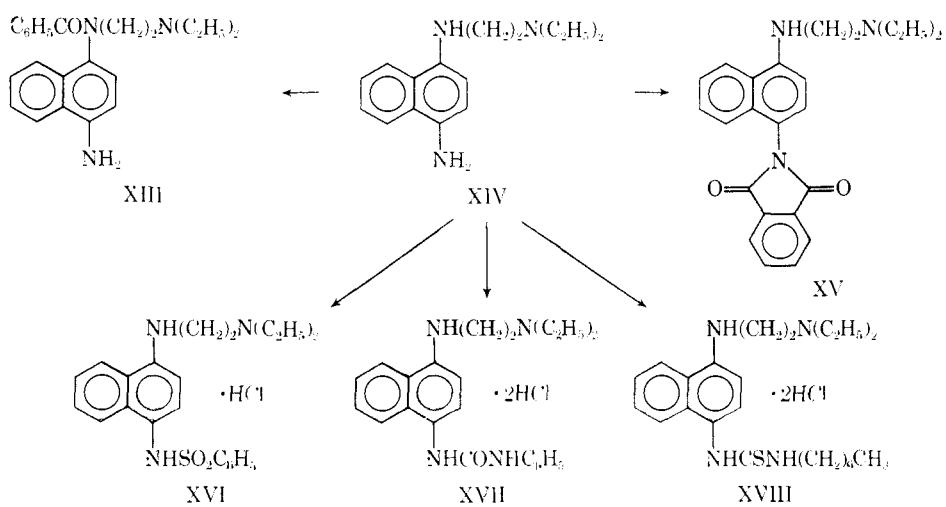
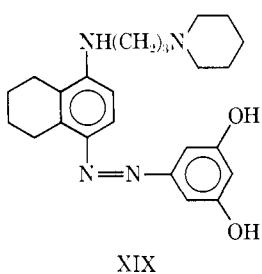
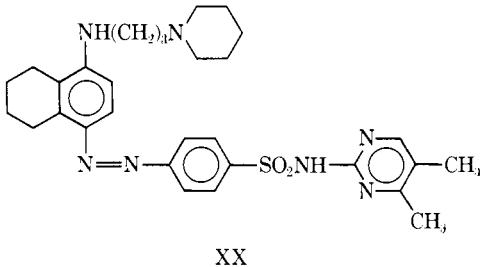
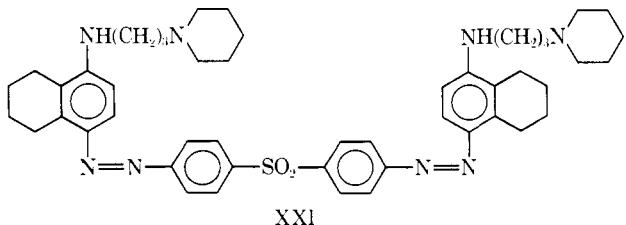




TABLE II
N-(4-{[2-(DIETHYLAmino)ETHYL]AMINO}-1-NAPHTHyl)BENZAMIDES^a

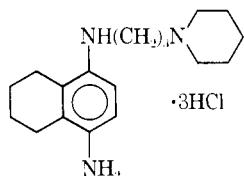
No.	X,Y,Z	Mp, °C	Yield purified, %	Purifn solvent	Formula ^b
					NH(CH ₂) ₂ N(C ₂ H ₅) ₂
36	3,4-Cl ₂	154.5-156.5	29	EtOH-H ₂ O	C ₂₃ H ₂₃ Cl ₂ N ₃ O
37	3-Br	128-130	24	Heptane	C ₂₃ H ₂₄ BrN ₃ O
38	4-Br	192-194	27	MeCN	C ₂₃ H ₂₄ BrN ₃ O
39	4-Cl	177-180	30	MeCN	C ₂₃ H ₂₆ ClN ₃ O
40	4-NO ₂	227-229	52	C ₆ H ₆	C ₂₃ H ₂₆ N ₄ O ₅
41	H	134-135.5	58	EtOH-H ₂ O	C ₂₃ N ₂₇ N ₃ O
42	2-CH ₃	116-119	48	Heptane	C ₂₄ H ₂₃ N ₃ O
43	4-CH ₃	143-145	46	C ₆ H ₆	C ₂₄ H ₂₃ N ₃ O _{0.33} C ₆ H ₆
44	4-OCH ₃	160-162	65	EtOH	C ₂₄ H ₂₃ N ₃ O ₂
45	3,4,5-(OCH ₃) ₃	163-164	63	i-PrOH-H ₂ O	C ₂₆ H ₃₃ N ₃ O ₄
46	4-O(CH ₂) ₄ CH ₃	171-172.5	39	MeCN	C ₂₈ H ₃₇ N ₃ O ₂
47	4-C ₆ H ₄ -p-N≡NC ₆ H ₅	155-157	13	C ₆ H ₆	C ₂₉ H ₃₁ N ₅ O


^a Compounds were prepared by procedure A.^b All compounds were analyzed for C, H, N.

XIX

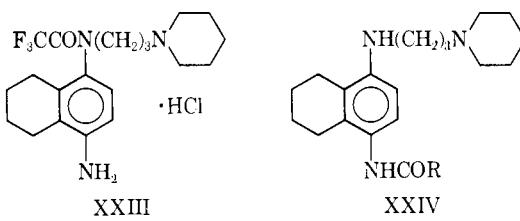
XX

N-(4,5-dimethyl-2-pyrimidinyl)-*p*-{5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthylazo}-benzenesulfonamide (XX),⁹ and 1,1'-{sulfonylbis-[*p*-phenyleneazo(5,6,7,8-tetrahydro-1,4-naphthylene)imino trimethylene}dipiperidine (XXI)⁷ were especially noteworthy and effected a 76-100% reduction of live


XXI

schistosomes when administered in the diet to mice for 14 days at daily doses of 256-364 mg/kg.^{12,13} More-

(12) For a description of test methods, see P. E. Thompson, J. E. Meisenheimer, and H. Najarian, *Amer. J. Trop. Med. Hyg.*, **11**, 31 (1962).


(13) P. E. Thompson and R. E. Voigtman, unpublished results, Parke, Davis and Company, Ann Arbor, Mich.

over, 1-[3-(4-amino-5,6,7,8-tetrahydro-1-naphthylamino)propyl]piperidine trihydrochloride (XXII),⁹ a likely

XXII

metabolite of the antimycobacterial and antischistosomal 1-(3-{[5,6,7,8-tetrahydro-4-(phenylazo) and 3-pyridylazo]-1-naphthyl}amino)propylpiperidines (Va and b, XIX-XXI), was considerably more potent and reduced the live worm burden 90 and 98% at daily diet doses of 88 and 159 mg/kg, respectively.^{12,13} It was therefore of interest to synthesize representative *N*-{5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl}amides (XXIVa-e) for antischistosomal

a, R = CH₃
b, R = CH₂CH₃
c, R = (CH₂)₃CH₃
d, R = (CH₂)₁₄CH₃
e, R = C₆H₅

and antimycobacterial evaluation. Compounds XXIVa-d were prepared in 37-83% yield by treating *N*-(4-amino-5,6,7,8-tetrahydro-1-naphthyl)-2,2,2-trifluoro-*N*-(3-piperidinopropyl)acetamide hydrochloride (XXIII)⁹ with the requisite acid anhydride in HOAc,

propionic acid, or pyridine followed by removal of the F_3CCO protecting group with aq EtOH-NaOH. *N*-(5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl)benzamide (XXIVe) (33%) was obtained directly from 1-[3-(4-amino-5,6,7,8-tetrahydro-1-naphthylamino)propyl]piperidine trihydrochloride (XXII)⁹ and benzoic anhydride in benzene.

The *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)alkyl- and aralkylamides (VIIIa and b) (**1-35**, Table I), *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)benzamides (VIIIc) (**36-47**, Table II), *N*-(5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl)amides (XXIVa-e), and related amide and urea derivatives (IX-XIII and XV-XVIII) described in the present communication were supplied to Dr. Paul E. Thompson and coworkers of these laboratories for evaluation against a Puerto Rican strain of *S. mansoni* in mice.¹² As in previous work, drugs were administered in a powdered diet for 7 or 14 days or by gavage in 10 ml/kg of aq 1% hydroxyethyl- or carboxymethylcellulose for 3 to 10 days. Drug amounts are expressed as free base. Schistosomicidal activity is widespread among the *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)alkyl- and aralkylamides (VIIIa and b), *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)benzamides (VIIIc), and the related amides Xa and b and XXIVe. The most potent substances (**2, 7, 8, 14, 16, 19, 24, Xa**) completely eliminated live schistosomes from infected mice at drug-diet doses ranging from 45 to 90 mg/kg per day for 7 or 14 days and gavage doses of 50 or 100 mg/kg daily for 3 or 5 days.¹³ Compounds **17, 28, 31, 32, 40, Xb**, and XXIVe also cured all of the mice at somewhat higher dose levels ranging from 130 to 326 mg/kg daily for 14 days by drug-diet or 200 mg/kg daily by gavage for 3 to 10 days.¹³ The above compounds, therefore, possessed distinctly more promising antischistosomal activity in mice than lucanthone hydrochloride,^{12,14} hycanthone,¹⁵ the tris-(*p*-aminophenyl)carbonium salts,^{12,16} 4,4'-(heptamethylenedioxy)dianiline dihydrochloride,^{17,18} *N*-[5-(*p*-aminophenoxy)pentyl]phthalimide,¹⁹ or 3-[4-(3-chloro-*p*-tolyl)-1-piperazinylcarbonyl]acrylic acid²⁰ when tested under comparable experimental conditions.^{12,13} Moreover, 18 other amides (**1, 3, 9, 11-13, 20, 21, 25-27, 34, 37-41, 43**) effected a marked reduction (74-99%) in live schistosomes at daily diet doses of 49-365 mg/kg for 7 or 14 days or gavage doses of 50-200 mg/kg per day for 3 or 5 days.¹³ The amide and urea derivatives **4, 5, 15, 18, 22, 23, 29, 45-47, IX, XI-XIII, XV-XVIII**, and XXIVc and d lacked significant antischistosome effects in mice at diet doses ranging from 109 to 668 mg/kg per day for 7 or 14 days or gavage doses of 50-200 mg/kg daily for 5 or 10 days.¹³

Ten compounds (**2, 8, 9, 13, 14, 17, 19, 27, 32, 34**) were selected for trial against the Puerto Rican strain of

S. mansoni in Rhesus monkeys,^{2,12} and 4 of them (**2, 8, 14, 17**) showed significant antischistosomal activity in this host.¹³ Drugs were given orally by gavage twice daily 5 days a week for 1 or 2 weeks. *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)octanamide (**17**, Table I) was the most active compound tested and cured monkeys or strongly suppressed egg production at a well-tolerated dose of 50 mg/kg per day for 10 days. However, the drug exhibited a poor therapeutic index in monkeys. Doses of 100 mg/kg per day for 5 days produced intolerance variably reflected by death, diarrhea, and inappetence. Moreover, the drug caused CNS effects in dogs at a dose of 50 mg/kg daily for 2 to 5 days. *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)propionamide (**2**), *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)valeramide (**8**), and *N*-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)heptanamide (**14**) produced a moderate to strong suppression of egg production at doses of 25-100 mg/kg per day for 5 or 10 days but were not curative. Therefore, hopes that the *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)amides might exhibit enhanced antischistosome activity coupled with more favorable host tolerance were not realized.

It is noteworthy that *N*-(4-{[2-(diethylamino)ethyl]amino}-1-naphthyl)heptanamide (**14**) was highly active against *S. mansoni* *in vitro* and killed all adult worms within 24 hr at a concentration of 50 $\mu\text{g}/\text{ml}$ and within 120 hr at a concentration of 12.5 $\mu\text{g}/\text{ml}$. Thus **14** was approximately twice as active *in vitro* as the parent *N*-(2-(diethylamino)ethyl)-1,4-naphthalenediamine (XIV)⁸ when tested in parallel. These observations demonstrate that the amides are active against schistosomes *per se*, and suggest that the antischistosome properties of these substances may not necessarily depend upon enzymatic scission to XIV in the host.

The *N*-(5,6,7,8-tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl)amides XXIVa-e were also tested against representative bacteria *in vitro*, including *Streptococcus pyogenes* (C203), *Staphylococcus aureus* (UC-76), *Proteus mirabilis* (MIGH-1), *Pseudomonas aeruginosa* (28), *Salmonella typhimurium* (V-31), and *Mycobacterium tuberculosis* (H₃₇Rv).⁹ Compound XXIVe completely inhibited *M. tuberculosis* H₃₇Rv *in vitro* at a concentration of 10 $\mu\text{g}/\text{ml}$, but the amides XXIVa-d were inactive even at 20 $\mu\text{g}/\text{ml}$. Each of the amides (XXIVa-e) was ineffective against *M. tuberculosis* H₃₇Rv infections in mice when the drugs were administered at 0.1-0.2% (87-206 mg/kg daily) in the diet for 7 days.⁹

Experimental Section^{21,22}

N-(4-{[2-(Diethylamino)ethyl]amino}-1-naphthyl)alkyl- and aralkylamides (VIIIa and b) (Table I). **Procedure A.**—To a suspension of 10.0 g (0.026 mol) of *N*-(4-amino-1-naphthyl)-*N*-(2-(diethylamino)ethyl)-2,2,2-trifluoroacetamide-HCl (VI)⁴ in 75 ml of pyridine was added 4.2 g (0.026 mol) of octanoyl chloride. Heat was evolved and the solid dissolved. The mixture was heated under reflux for 3 hr, and volatile materials were removed *in vacuo*. The residue was dissolved in

(21) Melting points (uncorrected) were taken on a Thomas-Hoover capillary melting point apparatus.

(22) Where analyses are indicated only by symbols of the elements or functions, analytical results obtained for these elements or functions were within $\pm 0.4\%$ of the theoretical values.

(14) W. Kikuth and R. Gönnert, *Ann. Trop. Med. Parasitol.*, **42**, 256 (1948).

(15) D. A. Berberian, E. W. Dennis, H. Freele, D. Rosi, T. R. Lewis, R. Lorenz, and S. Archer, *J. Med. Chem.*, **12**, 607 (1969), and ref cited therein.

(16) E. F. Eislager, F. W. Short, D. F. Worth, J. E. Meisenhelder, H. Najarjan, and P. E. Thompson, *Nature*, **190**, 828 (1961).

(17) C. G. Raison and O. D. Standen, *Brit. J. Pharmacol.*, **10**, 191 (1955).

(18) R. F. Collins, M. Davis, N. D. Edge, and J. Hill, *ibid.*, **13**, 238 (1958).

(19) R. F. Collins, M. Davis, N. D. Edge, J. Hill, H. W. Reading, and E. R. Turnbull, *ibid.*, **14**, 467 (1959).

(20) G. Lännler, *Z. Tropenmed. Parasitol.*, **9**, 294 (1958).

EtOH, several ml of 50% aq *NaOH* in a small volume of *H₂O* were added, and the mixture was heated under reflux for 3 hr and cooled. The solid which formed was collected by filtration and crystallized from *EtOH*-*H₂O* to give 3.3 g *N*-(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)octanamide (17) as an off-white solid, mp 98-100°. A second crop was obtained by concentrating the filtrate to dryness, triturating the residue with *H₂O*, and crystallizing the insoluble material from *EtOH*-*H₂O*.

Procedure B.—To a suspension of 20.0 g (0.051 mol) of VI⁴ in 150 ml of pyridine was added 13.0 g (0.054 mol) of heptanoic anhydride. The mixture was heated under reflux for 3 hr and volatile materials were removed *in vacuo*. The residue was dissolved in *EtOH*, made basic with aq *NaOH*, and heated under reflux for 10 hr. The solvent was removed *in vacuo*, and the residue was triturated with *H₂O*, filtered, dried, and crystallized from heptane to give 8.7 g (43%) of *N*-(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)heptanamide (14) as off-white crystals, mp 95-98°.

Procedure C.—A solution of 10.0 g (0.026 mol) of VI⁴ in 50 ml of *HOAc* and 10 ml of *Ac₂O* was heated under reflux for 2 hr and volatile materials were removed on a rotary evaporator. The residue was dissolved in *EtOH*, aq *NaOH* was added, and the mixture was heated under reflux for 2 hr. The solvent was removed *in vacuo* and the residue was triturated with *H₂O*, dried, and crystallized from *EtOAc* to give 5.0 g (64%) of *N*-(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)acetamide (1) as off-white crystals, mp 96-98°.

Procedure D.—*N*-(2-(Diethylamino)ethyl)-1,4-naphthalenediamine-2*HCl*·0.25 hydrate (XIV)⁸ (10.0 g, 0.03 mol) was dissolved in *H₂O* and the solution was chilled, made basic with *NH₄OH*, and extracted with *C₆H₆*. To the dried *C₆H₆* extracts was added 2.9 g (0.03 mol) of maleic anhydride and the mixture was heated under reflux for 2 hr and allowed to cool to room temperature. The *C₆H₆* was decanted and the residual gum was heated with *EtOH* to give a solid. The product was triturated with several portions of *C₆H₆*, filtered, and dried to give 8.5 g (76%) of *N*-(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)-maleamic acid hemihydrate (4), mp 179-180° dec.

N-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)benzamides (VIIIc) (Table II).—*N*-(2-(Diethylamino)ethyl)-1,4-naphthalenediamine-2*HCl*·0.25 hydrate (XIV)⁸ (20.0 g, 0.06 mol) was converted into the base as in procedure D and a solution of the base in *C₆H₆* was heated under reflux for 2 hr with 13.5 g (0.06 mol) of *Bz₂O*. The mixture was filtered hot and the solid that formed in the filtrate upon cooling was crystallized from 500 ml of *EtOH* to give 16.8 g (58%) of *N*-(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)benzamide benzoic acid salt, mp 176.5-177.5°. *Anal.* (C₂₃H₂₇N₃O·C₇H₈O₂) C₆H₆.

A portion (6.5 g, 0.0135 mol) of the benzoic acid salt was suspended in aq *NaOH* and warmed on a steam bath for 1 hr. The solid was collected by filtration and crystallized from *EtOH*-*H₂O* to give 3.4 g (70%) of the base (41), mp 134-135.5°.

Alternatively, the reaction of VI⁴ with *BzCl* in pyridine according to procedure A gave material that was identical with the base described above. Procedure A was utilized for the preparation of all of the compounds listed in Table II.

N-(2-(Diethylamino)ethyl)-2,2,2-trifluoro-*N,N'*-1,4-naphthylenebisacetamide (IX).—A solution of 10.0 g (0.026 mol) of VI⁴ in 50 ml of *HOAc* and 10 ml of *Ac₂O* was heated under reflux for 2 hr. The mixture was cooled and poured into a large vol of *Et₂O*. The gummy solid that formed was removed by filtration, added to dil *NaOH*, and warmed on a steam bath for 1 hr. The solid which formed was collected by filtration, crystallized twice from *MeCN*, and triturated with hot *EtOAc* to give 1.7 g (17%) of the product, mp 173-174°. *Anal.* (C₂₀H₂₄F₃N₃O₂) C₆H₆.

N-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)-2-furamide (Xa).—The monohydrochloride VI⁴ (10.0 g, 0.026 mol) and 2-furoyl chloride (3.4 g, 0.026 mol) were allowed to react and the reaction mixture was processed according to procedure A. The product (3.3 g, 37%) was obtained as off-white crystals from *i-Pr₂O*, mp 115-117.5°. *Anal.* (C₂₁H₂₅N₃O₂) C₆H₆.

N-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)-2-thiophenecarboxamide (Xb).—From 10.0 g (0.026 mol) of VI⁴ and 3.8 g (0.026 mol) of 2-thenoyl chloride utilizing procedure A was obtained 5.0 g (53%) of product as beige crystals from *i-PrOH*, mp 162-164.5°. *Anal.* (C₂₁H₂₅N₃OS) C₆H₆.

N,N'-Bis(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)oxamide (XIa).—A mixture of 10.0 g (0.026 mol) of VI⁴ and 1.7 g (0.013 mol) of oxalyl chloride in 75 ml of pyridine was heated under reflux for 3 hr. The solvent was removed *in vacuo*, and the

residue was dissolved in *EtOH*, diluted with an equal vol of 20% aq *NaOH*, and heated under reflux for 1 hr. Filtration afforded a gummy solid which was crystallized from *C₆H₆*-petr ether to give 1.5 g (21%) of yellow crystals, mp 162-163°. *Anal.* (C₂₄H₄₄N₆O₂) C₆H₆.

N,N'-Bis(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)-decanediamide (XIb).—Utilizing the procedure described for XIa, VI⁴ (10.0 g, 0.026 mol), and sebacyl chloride (3.1 g, 0.013 mol) afforded 3.0 g (34%) of product as off-white crystals from *C₆H₆*, mp 144-146°. *Anal.* (C₄₂H₈₀N₆O₂) C₆H₆.

1,3-Bis(4-[2-(diethylamino)ethyl]amino)-1-naphthyl)urea (XII).—A solution of 10.0 g (0.026 mol) of VI⁴ and 4.0 g (0.026 mol) of diethylcarbamoyl chloride in 30 ml of pyridine was heated under reflux for 1.5 hr. The mixture was cooled, poured into iced aq *NaOH*, and filtered. The solid was dissolved in *EtOH*, and the mixture was made basic with *NaOH*, heated under reflux for 2 hr, cooled, and filtered. The solid obtained was crystallized from *EtOH* to give 2.4 g (35%) of the product as colorless crystals, mp 198-200°. *Anal.* (C₂₃H₄₄N₆O) C₆H₆.

N-(4-Amino-1-naphthyl)-*N*-(2-(diethylamino)ethyl)benzamide (XIII).—*N*'-(2-(Diethylamino)ethyl)-1,4-naphthalenediamine-2*HCl*·0.25 hydrate (XIV)⁸ (20.0 g, 0.06 mol) was dissolved in *H₂O* and the solution was chilled, made basic with *NH₄OH*, and extracted with *C₆H₆*. To the dried *C₆H₆* extracts was added 1.26 g (0.03 mol) of *CaH₂* (fine 4-40 mesh). The solution was stirred vigorously and to it was added dropwise a solution of 8.2 g (0.06 mol) of *BzCl* in *C₆H₆*. The mixture was stirred at room temperature for 2 hr, diluted with *H₂O*, and filtered. The solid thus obtained was crystallized from *EtOH*-*H₂O* to give 2.5 g (12%) of tan needles, mp 166-167°. *Anal.* (C₂₃H₂₇N₃O) C₆H₆.

N-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)phthalimide (XV).—A mixture of 10.0 g (0.03 mol) of *N*-(2-(diethylamino)ethyl)-1,4-naphthalenediamine-2*HCl*·0.25 hydrate (XIV)⁸, 2.45 g of *NaOAc*, and 4.42 g (0.03 mol) of phthalic anhydride in 30 ml of *HOAc* was heated under reflux for 1 hr. The reaction mixture was poured into *H₂O*, made basic with aq *NaOH*, and the gummy semisolid that separated was crystallized twice from *EtOH*-*H₂O* to give 3.0 g (26%) of tan plates, mp 135-137°. *Anal.* (C₂₄H₂₆N₂O₂) C₆H₆.

N-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)benzenesulfonamide Monohydrochloride (XVI).—Compound XIV⁸ (20.0 g, 0.06 mol) was converted into the base and dissolved in xylene. *PhSO₂Cl* (10.6 g, 0.06 mol) and *Et₃N* (6.0 g, 0.06 mol) were added to the dried xylene extracts and the mixture was heated under reflux for 3 hr and cooled. The gummy solid which separated was dissolved in dil *HCl* and the solution was allowed to stand at room temperature for 48 hr. The solid that separated was collected by filtration and crystallized from *MeOH*-*H₂O* to give 2.0 g (8%) of the product as beige crystals, mp 204-205°. *Anal.* (C₂₂H₂₇N₃O₂S·HCl) C₆H₆.

The same product was obtained from VI⁴ and *PhSO₂Cl* in pyridine utilizing procedure A.

1-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)-3-phenylurea Dihydrochloride (XVII).—Compound XIV⁸ (14.0 g, 0.042 mol) was converted into the base and dissolved in *C₆H₆*. Phenyl isocyanate (4.6 g, 0.038 mol) was added to the dried *C₆H₆* extracts and the mixture was heated under reflux for 0.5 hr and concentrated to 50 ml *in vacuo*. This was poured into 2 l of *Et₂O* and the small amount of precipitate that formed was removed by filtration and discarded. A solution of *HCl* in *i-PrOH* was added to the filtrate and the solid that separated was collected and dried. The crude product was crystallized from *i-PrOH*-*Et₂O*. This material was dissolved in *H₂O*, the *H₂O* solution was made basic with *NaOH*, and the base was extracted with *Et₂O*. An excess of *HCl* in *i-PrOH* was added to the *Et₂O* extracts, and the salt was collected and dried to give 10.0 g (54%) of off-white crystals, melting point indefinite from 150°. *Anal.* (C₂₃H₂₈N₄O·2HCl·2H₂O) C₆H₆Cl₂N₂H₂O: calcd, 7.42; found, 6.64.

1-(4-[2-(Diethylamino)ethyl]amino)-1-naphthyl)-3-heptyl-2-thiourea Dihydrochloride (XVIII).—Utilizing the procedure for XVII *N*-(2-(diethylamino)ethyl)-1,4-naphthalenediamine-2*HCl*·0.25 hydrate (XIV)⁸ (17.4 g, 0.05 mol) was allowed to react with 7.9 g (0.05 mol) of heptyl isothiocyanate to give 9.2 g (38%) of pale lavender crystals from *MeCN*, mp 183-186°. *Anal.* (C₂₄H₃₈N₄S·2HCl) C₆H₆.

N-(5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl)acetamide (XXIVa).—A solution of 8.4 g (0.02 mol) of *N*-(4-amino-5,6,7,8-tetrahydro-1-naphthyl)-2,2,2-trifluoro-*N*-(3-piperidinopropyl)acetamide·HCl (XIII)⁸ and 2.0 g (0.02 mol) of *Ac₂O* in 75 ml of *HOAc* was heated under reflux for 2.5 hr.

Volatile materials were removed *in vacuo* and the residue was dissolved in EtOH containing several ml of 50% aq NaOH and a small vol of H₂O. The mixture was heated under reflux for 2 hr and the solvent was removed *in vacuo*. The residue was triturated with H₂O, collected by filtration, and crystallized from *i*-PrOH-H₂O to give 5.5 g (83%) of pale yellow platelets, mp 148–150°. *Anal.* (C₂₀H₃₁N₃O) C, H, N.

N-[5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl]propionamide (XXIVb).—The hydrochloride XXIII⁹ (8.4 g, 0.02 mol) and (EtCO)₂O (2.6 g, 0.02 mol) were allowed to react in 70 ml of EtCO₂H and the reaction mixture was processed according to XXIVa. The product (4.5 g, 66%) was obtained as beige crystals from heptane, mp 124–125°. *Anal.* (C₂₁H₃₃N₃O) C, H, N.

N-[5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl]heptanamide (XXIVc).—From 8.4 g (0.02 mol) of XXIII⁹ and 4.8 g (0.02 mol) of heptanoic anhydride in 75 ml of pyridine utilizing procedure B was obtained 3.0 g (37%) of product as off-white crystals from heptane, mp 91–92°. *Anal.* (C₂₅H₄₁N₃O) C, H, N.

N-[5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl]hexadecanamide (XXIVd).—From 8.4 g (0.02 mol) of XXIII⁹ and 9.9 g (0.02 mol) of palmitic anhydride in 100 ml of pyridine utilizing procedure B was obtained 7.5 g (71%) of product as tan crystals from *i*-PrOH-H₂O, mp 85° dec. *Anal.* (C₃₄H₅₉N₃O) C, H, N.

N-[5,6,7,8-Tetrahydro-4-[(3-piperidinopropyl)amino]-1-naphthyl]benzamide (XXIVe).—An aq solution of 10.0 g (0.024 mol) of 1-[3-(4-amino-5,6,7,8-tetrahydro-1-naphthylamino)propyl]piperidine-3HCl (XXII)⁹ was made basic with NH₄OH and extracted with C₆H₆. The dried C₆H₆ extracts were treated with 5.5 g (0.024 mol) of Bz₂O and the mixture was heated under reflux for 2 hr and cooled. The crude product was collected by filtration, dried, and crystallized twice from *i*-PrOH-EtOH to give 4.1 g (33%) of off-white crystals of the benzoic acid salt, mp 184–186°. *Anal.* (C₂₆H₃₃N₃O·C₇H₆O₂) C, H, N.

The alcohol filtrate from the final recrystallization was heated with concentrated NaOH for 1.5 hr. The alcohol layer was decanted, evaporated to dryness, and the residue crystallized from EtOH-H₂O to give 0.62 g of the free base, mp 152–153.5°. *Anal.* (C₂₆H₃₃N₃O) C, H, N.

Acknowledgments.—The authors wish to express their appreciation to Dr. Paul E. Thompson, Mr. R. E. Voigtman, and Dr. M. W. Fisher of these laboratories for the antischistosomal and antibacterial testing. We also thank Mr. C. E. Childs and associates for the microanalytical data, and Mr. D. F. Worth and Mrs. A. A. Phillips for the preparation of several of the compounds described herein.

Synthesis and Schistosomicidal Activity of 6-Chloro-5-[2-(diethylamino)ethyl]amino]-8-quinolinemethanol¹

DENIS M. BAILEY, SYDNEY ARCHER, DAVID WOOD, DAVID ROSI, AND ALLEN YARINSKY

Steering-Winthrop Research Institute, Rensselaer, New York 12144

Received February 9, 1970

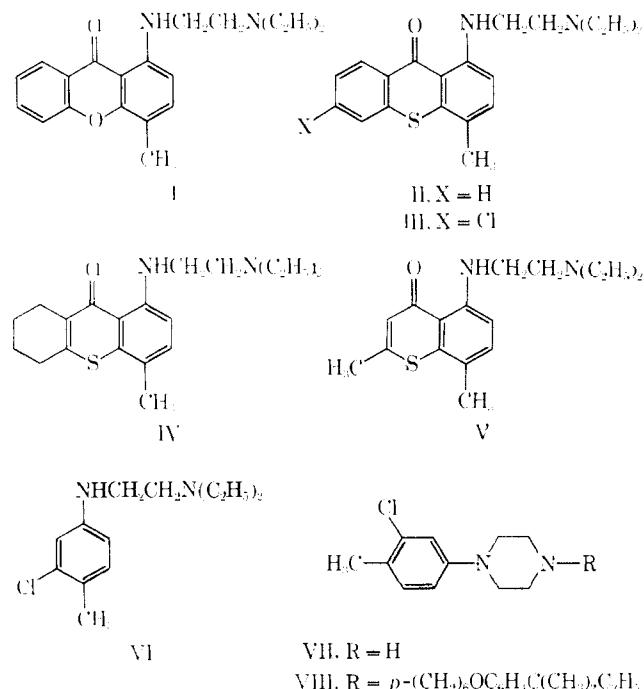
The title compound (XVIII) has been synthesized chemically in a seven-step sequence and also by microbiological oxidation of 6-chloro-5-[2-(diethylamino)ethyl]amino]-8-methylquinoline,² IX, by *Aspergillus sclerotiorum*. The Skraup reaction on 4-chloro-*o*-toluidine produced 6-chloro-8-methylquinoline which was titrated and then oxidized to 6-chloro-5-nitro-8-quinolinemethanol. Catalytic reduction of the Me ester followed by NaH-induced alkylation with diethylaminoethyl chloride produced methyl 6-chloro-5-[2-(diethylamino)ethyl]amino]-8-quinolinemethanol. Reduction of the latter compound with LAH at low temperatures gave XVIII. A comparison of the oral and parenteral activities of IX and XVIII against *Schistosoma mansoni* and *S. japonicum* infections has been carried out in mice and hamsters.

Since the discovery by Kikuth and Gönnert³ that compounds I–III, synthesized earlier by Mauss,⁴ had oral schistosomicidal activity in mice, chemical investigations in various laboratories have produced a number of related compounds (*e.g.*, IV–IX)^{2,5} of which IX² is most relevant to the present work.

Compelling evidence^{3,4,6,7} has been accumulated that the structural feature necessary for biological activity against schistosomes in mice in this broad class of compounds is a dialkylaminoalkylamino group *para* to Me

(1) Presented in part before the Division of Medicinal Chemistry, 158th National Meeting of the American Chemical Society, New York, N. Y., Sept 1969.

(2) N. W. Bristow, B. Lessel, H. C. Richards, and G. A. H. Williams, *Nature*, **216**, 282 (1967).


(3) W. Kikuth and R. Gönnert, *Ann. Trop. Med. Parasitol.*, **42**, 256 (1948).

(4) H. Mauss, *Chem. Ber.*, **81**, 19 (1948).

(5) (a) F. Bosseri, H. Henecka, and R. Gönnert, German Patent 1,024,980 (1958); (b) F. Bosseri and R. Gönnert, German Patent 954,599 (1956); (c) H. Mauss, H. Kolling, and R. Gönnert, *Med. Chem. Althausl. Med. Chem. Forschungsstatten Farbenfabriken Bayer*, **5**, 185 (1956); (d) H. Rutschig, D. M. Schmidt, H. Leditschke, M. Schorr, and G. Laminler, German Patent 1,019,308 (1957); (e) A. O. Geisler, P. M. Bauman, A. Alter, and G. F. Otto, Reports given at the Annual Meeting of the American Society of Tropical Medicine and Hygiene, New York, N. Y., Nov 7, 1964.

(6) S. Archer and C. M. Suter, *J. Amer. Chem. Soc.*, **74**, 4296 (1952).

(7) D. Rosi, G. Peruzzatti, E. W. Dennis, D. A. Berberian, H. Frede, B. F. Tabar, and S. Archer, *J. Med. Chem.*, **10**, 867 (1967).

